close
close

Network manifestations of traumatic brain injuries

  • Dewan, Mc et al. Estimation of global incidence of traumatic brain injuries. J. Neurosurg. (2018).

    Article Pubmed Pubmed Central Google Scholar

  • National Clinical Guideline Center (UK). Head injury: triage, evaluation, examination and early treatment of head injuries in children, adolescents and adults. National Institute for Health and Nursing Excellency (Great Britain) (2014).

  • Progress. statistics<(2022).

  • Menon, DK et al. Position statement: Definition of a traumatic brain injury. Bow. Phys. Med. Rehability. 911637–1640. (2010).

    Article PubMed Google Scholar

  • Nelson, LD et al. Functional relaxation, symptoms and quality of life 1 to 5 years after traumatic brain injury. Jama Netw. Open 6E233660. (2023).

    Article Pubmed Pubmed Central Google Scholar

  • Majdan, M. et al. Severe and result of traumatic brain injuries (TBI) with different causes of injury. Brain. Inj. 25797–805. (2011).

    Article PubMed Google Scholar

  • Malec, JF et al. The Mayo classification system for the severity of the traumatic brain injury. J. Neurotrauma 241417–1424. (2007).

    Article PubMed Google Scholar

  • Cifu, D. et al. Management of the Working Group VA/DOD Clinical Practice for Scashing the Brain Traumatic Brain injuries to treat brain concealing/light traumatic brain injuries. J. Rehabil. Res. Dev. (2009).

    Article PubMed Google Scholar

  • Marshall, LF et al. A new classification of head injuries based on computer -aided tomography. J. Neurosurg. 75S14 – S20 (1991).

    Article Google Scholar

  • Machau, J. et al. Symptom frequency and persistence in the first year after traumatic brain injury: a Track TBI study. J neurotrauma 39358–370. (2022).

    Article Pubmed Pubmed Central Google Scholar

  • Saliman, NH, Belli, A. & Blanch, RJ afferent visual manifestations of traumatic brain injuries. J. Neurotrauma (2021).

    Article PubMed Google Scholar

  • Hepschke, JL et al. Modifications in the Makula Perfusion and the neural loss after acute traumatic brain injury. Investigative ophthalmol. Visual sci. 6435. (2023).

    Article Google Scholar

  • Lyons, HS et al. A systematic review of the findings of optical coherence tomography in adults with a slight traumatic brain injury. Eye (lond) 381077-1083. (2024).

    Article PubMed Google Scholar

  • Bill, A. & Sperber, GO control of retina and choroidal blood flow. Eye (lond) 4(PT 2), 319-325. (1990).

    Article PubMed Google Scholar

  • Courtie, E., Gilani, A., Veenith, T. & Blanch, RJ Optical coherence tomography Angiography as a replacement marker for the end-organ reversing in sepsis: a review. Front. Med. (Lausanne) 91023062. (2022).

    Article PubMed Google Scholar

  • Wagner, SK et al. The optical coherence tomography characteristics of the retina, which are associated with an incident and the existing Parkinson's disease. neurology 101E1581 – E1593 (2023).

    Article CAS PubMed PubMed central Google Scholar

  • Zhao, L. et al. Multimodal retinal imaging to detect an ischemic stroke. Front. Aging neurosci. 13615813 (2021).

    Article CAS PubMed PubMed central Google Scholar

  • Bruce, B. et al. Microvascular retinal changes and vascular diameters are moderately associated with a positive magnetic resonance diffusion diffusion (MR-DWI) in patients who present the emergency room (ED) with suspicious TIA: the photo-TIA study (2914). neurology 962914 (2021).

    Article Google Scholar

  • Gilmore, CS et al. Association of optical coherence tomography with longitudinal neurodegeneration in veterans with chronic, mild traumatic brain injury. Jama Netw. Open 3E2030824. (2020).

    Article Pubmed Pubmed Central Google Scholar

  • Steinsapir, KD & Goldberg, RA traumatic optic neuropathy. Survive. Ophthalmol. 38487–518. (1994).

    Article CAS PubMed Google Scholar

  • Kumar Das, N. & Das, M. Structural changes in the retina (nerve fiber layer) after a slight traumatic brain injury and the association with the development of visual field defects. Neurol Clinic. Neurosurg. 212107080. (2022).

    Article PubMed Google Scholar

  • Chan, JW, Hills, NK, Bakall, B. & Fernandez, B. Indirect traumatic optical neuropathy with mild chronic traumatic brain injury. Invest. Ophthalmol. Visual sci. 602005–2011 (2019).

    Article Google Scholar

  • Cunha, LP, Costa-Cunha, LVF, Malta, RFS & Monteiro, MLR comparison between the nerve fiber layer of the retina and the macular thickness, measured with OCT recognition of progressive axonal loss after traumatic optics neuropathy. Arquivos. Brasileros de optalmologia. 72622–625 (2009).

    Article PubMed Google Scholar

  • Lopez-de-Eguileta, A. & Casado, A. Various OCT analyzes of traumatic optical neuropathy a case report. Am. J. Ophthalmol. Case Rep. 20100879. (2020).

    Article Pubmed Pubmed Central Google Scholar

  • Medeiros, Fa, Moura, FC, Vessani, RM & Susanna, R. Jr. Axonal Loss after traumatic optical neuropathy documented by optical coherence tomography. Am. J. Ophthalmol. 135406–408. (2003).

    Article PubMed Google Scholar

  • Garcia-Martin, E. et al. Fourier-Domain Oct for multiple sclerosis patients: reproducibility and ability to detect nerve fiber layer atrophy. Investigative ophthalmol. Visual sci. 524124–4131. (2011).

    Article Google Scholar

  • TAN, BB, Natividad, M., Chua, KC & YIP, LW comparison of measuring the fiber layer measurement of the retinal nerve layer between 2 spectralomaes -OCT instruments. J. Glaucom 21266–273. (2012).

    Article PubMed Google Scholar

  • Wu, H., de Boer, Jf & Chen, TC Reproducibility The thickness of the thickness of the retina fiber using the optical coherence tomography of the spectral domain. J. Glaucom 20470–476. (2011).

    Article Pubmed Pubmed Central Google Scholar

  • Langenegger, SJ, Funk, J. & Toteberg Harms, M. Reproducibility of the thickness of the retina fiber fiber thickness using the eye tracker and the repeat function of Spectralis SD-OCT in glaucomatous and healthy control eyes. Investigative ophthalmol. Visual sci. 523338–3344. (2011).

    Article Google Scholar

  • Garcia-Martin, E. et al. Effect of cataract surgery on optical coherence measurements and repeatability in patients with non -insulin -dependent diabetes mellitus. Investigative ophthalmol. Visual sci. 545303–5312. (2013).

    Article Google Scholar

  • Bambo, MP et al. Influence of cataract surgery on repeatability and measurements of optical coherence tomography of the spectral domain. Br. J. Ophthalmol. 9852–58. (2014).

    Article PubMed Google Scholar

  • Kochendorfer, L., Bauer, P., Funk, J. & TOTEBERG-HARMS, M. Analysis of the posterior pole asymmetry with optical coherence tomography. Clin. Monbl. Auzenheilkd. 231368–373. (2014).

    Article CAS PubMed Google Scholar

  • Cetinkaya, E., Duman, R., Duman, R. & Sabaner, Mc resolution and reproducibility of the automatic segmentation of retinal layers in healthy subjects using the optical spectral coaches. Arq. BHS. Oftalmol. 80378–381. (2017).

    Article PubMed Google Scholar

  • CTORI, I. & HUNTJENS, B. Repeatability of foveal measurements using spectralis optical coherence -Tomography -segmentation software. Plos one 10E0129005. (2015).

    Article CAS PubMed PubMed central Google Scholar

  • Jimenez Santos, M., Acebal Montero, A. & Balominero, S.-F. Reproducibility of the nerve layer and ganglion cell layer thickness in a healthy pediatric population. Europe. J. Ophthalmol. 312087–2094. (2021).

    Article Google Scholar

  • Blanch, RJ, Joseph, IJ & Cockerham, K. traumatic optics neuropathy management: a systematic review. Eye (lond) 382312–2318. (2024).

    Article PubMed Google Scholar

  • Childs, C., Barker, La, Gage, Am & Loosemore, M. Investigation of the possible retina biomark for head trauma in Olympic boxers using optical coherence tomography. Eye brain 10101–110. (2018).

    Article Pubmed Pubmed Central Google Scholar

  • Kal, M. et al. The effect of a reduced oxygen saturation on the retinal microvascularization in COVID 19 patients with bilateral pneumonia based on the optical coherence tomography study. J. Pers. Med. (2022).

    Article Pubmed Pubmed Central Google Scholar

  • Beharey, KD et al. Influence of chronic intermittent hypoxia chronic newborns on the severity of retinal damage in a rat model of oxygen-induced retinopathy. J. Nat. Sci. 43 (2018).

    Google Scholar

  • Mesentier-Luro, La et al. Hypoxie-induced inflammation: profiling of the first 24-hour post-hypoxic plasma and central nervous systems. Plos one 16E0246681. (2021).

    Article CAS PubMed PubMed central Google Scholar

  • Skelton, La et al. Retinalgliosis and phenotypical diversity of the middle filament induction and redesign in the exposure of the acoustic explosion over pressure (subscription) compared to the rat eye. Attempt. Eye res. 234109585. (2023).

    Article Cas Google Scholar

  • Hajdu, Ri et al. Detailed evaluation of the possible loss of ganglion cells in the retina of Zucker Diabetic Fett (ZDF) rats. Sci. Rep. 910463. (2019).

    Article display CAS PUBMED PUBMED Central Google Scholar

  • Hood, DC, Raza, As, de Moraes, CG, Liebmann, JM & Ritch, R. GlaComatous Damage to the Macula. Prog Retin Eye Res 321–21. (2013).

    Article PubMed Google Scholar

  • Jang, Sytra -Raumatic optic neuropathy .. Korean Jeurotrauma 141–5. (2018).

    Article Pubmed Pubmed Central Google Scholar

  • Raj, R., Kaprio, J., Jousilahti, P., Korja, M. & Siiralen, J. Risk of dementia after hospitalization due to traumatic brain injuries: a longitudinal population-based study. neurology 98E2377 – E2386. (2022).

    Article CAS PubMed Google Scholar

  • Shively, S., Scher, Ai, Perl, DP & Diaz-Arrastia, R. Dementia due to traumatic brain injuries: What is the pathology?. Bow. Neurol. 691245–1251. (2012).

    Article Pubmed Pubmed Central Google Scholar

  • Leave a Comment